
 1

Climate Model Output Rewriter (CMOR)

Version 2.0 (CMOR2)
Charles Doutriaux, Karl E. Taylor

November 23, 2009

A Revision of Version 1.0 (CMOR1)

Karl E. Taylor, Charles Doutriaux, and Jean-Yves Peterschmitt

July 14, 2006

Design Considerations and Overview

This document describes Version 2 of a software library called "Climate Model Output
Rewriter" (CMOR2),1 written in C with access also provided via Fortran 90 and through
Python2. CMOR is used to produce CF-compliant3 netCDF4 files. The structure of the
files created by CMOR and the metadata they contain fulfill the requirements of many of
the climate community's standard model experiments (which are referred to here as
"MIPs"5 and include, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario
runs).

CMOR was not designed to serve as an all-purpose writer of CF-compliant netCDF files,
but simply to reduce the effort required to prepare and manage MIP model output.
Although MIPs encourage systematic analysis of results across models, this is only easy to
do if the model output is written in a common format with files structured similarly and
with sufficient metadata uniformly stored according to a common standard. Individual
modeling groups store their data in different ways, but if a group can read its own data,
then it should easily be able to transform the data, using CMOR, into the common format
required by the MIPs. The adoption of CMOR as a standard code for exchanging climate

1 CMOR is pronounced "C-more", which suggests that CMOR should enable a wide community of scientists
to "see more" climate data produced by modeling centers around the world. CMOR also reminds us of
Ecinae Corianus, the revered ancient Greek scholar, known to his friends as "Seymour". Seymour spent
much of his life translating into Greek nearly all the existing climate data, which had originally been
recorded on largely insrutable hieroglyphic and cuneiform tablets. His resulting volumes, organized in a
uniform fashion and in a language readable by the common scientists of the day, provided the basis for much
subsequent scholarly research. Ecinae Corianus was later indirectly honored by early inhabitants of the
British Isles who reversed the spelling of his name and used the resulting string of letters, grouped
differently, to form new words referring to the major elements of climate.
2 CMOR1 was written in Fortran 90 with access also provided through Python.
3 See http://www.cgd.ucar.edu/cms/eaton/cf-metadata
4 See http://my.unidata.ucar.edu/content/software/netcdf/
5 "MIP" is an acronym for "model intercomparison project".

 2

data will facilitate participation in MIPs because after learning how to satisfy the output
requirements of one MIP, it will be easy to prepare output for other MIPs.

CMOR output has the following characteristics:

• Each file contains a single output variable (along with coordinate/grid variables,
attributes and other metadata) from a single model and a single simulation (i.e.,
from a single ensemble member of a single climate experiment). This method of
structuring model output best serves the needs of most researchers who are
typically interested in only a few of the many variables in the MIP databases. Data
requests can be satisfied by simply sending the appropriate file(s) without first
extracting the individual field(s) of interest.

• There is flexibility in specifying how many time slices (samples) are stored in a
single file. A single file can contain all the time-samples for a given variable and
climate experiment, or the samples can be distributed in a sequence of files.

• Much of the metadata written to the output files is defined in MIP-specific tables of
information, which in this document are referred to simply as "MIP tables". These
tables are ASCII files that can be read by CMOR and are typically made available
from MIP web sites. Because these tables contain much of the metadata that is
useful in the MIP context, they are the key to reducing the programming burden
imposed on the individual users contributing data to a MIP. Additional tables can
be created as new MIPs are born.

• For metadata, different MIPs may have different requirements, but these are
accommodated by CMOR, within the constraints of the CF convention and as
specified in the MIP tables.

• CMOR relies on NetCDF4 (see http://www.unidata.ucar.edu/software/netcdf) to
write the output files and can take advantage of its compression and chunking
capabilities. Compression is controlled with the MIP tables using the shuffle,
deflate and deflate_level attributes, default values are respectively 1, 1 and 6. It is
worth noting than although it is using NetCDF4, CMOR2 is still producing
NETCDF_CLASSIC formatted output. This allows the file generated to be
readable by any application that can read NetCDF3 provided they are re-linked
against NetCDF4. It is also still possible to write files that can be read by read
through the NetCDF3 library through appropriate instructions to CMOR (i.e.
adding “_3” to the cmor_setup arguments, see below).

• CMOR also must be linked against the udunits2 library (see
http://my.unidata.ucar.edu/content/ software/udunits/), which enables CMOR to
check that the units attribute is correct6. Finally CMOR2 must also be linked
against the uuid library (see http://www.ossp.org/pkg/lib/uuid) in order to produce
a unique tracking number for each file.

Although the CMOR output adheres to a fairly rigid structure, there is considerable
flexibility allowed in the design of codes that write data through the CMOR functions.
Depending on how the source data are stored, one might want to structure a code to read
and rewrite the data through CMOR in several different ways. Consider, for example, a

6 CMOR1 was linked to an earlier version of the netCDF library and udunits was optional.

 3

case where data are originally stored in "history" files that contain many different fields,
but a single time sample. If one were to process several different fields through CMOR
and one wanted to include many time samples per file, then it would usually be more
efficient to read all the fields from the single input file at the same time, and then distribute
them to the appropriate CMOR output files, rather than to process all the time-samples for
a single field and then move on to the next field. If, however, the original data were stored
already by field (i.e., one variable per file), then it would make more sense to simply loop
through the fields, one at a time. The user is free to structure the conversion program in
either of these ways (among others).

Converting data with CMOR typically involves the following steps (with the CMOR
function names given in parentheses):

• Initialize CMOR and specify where output will be written and how error messages
will be handled (cmor_setup).

• Provide information directing where output should be placed and identifying the
data source, project name, experiment, etc. (cmor_dataset).

• Set any additional “dataset” (i.e. global) attributes (cmor_set_cur_dataset function).
• Define the axes (i.e., the coordinate values) associated with each of the dimensions

of the data to be written and obtain "handles", to be used in the next step, which
uniquely identify the axes (cmor_axis).

• In the case of non-cartesian longitude-latidude grids or for “station data”, define the
grid and its mapping parameters (cmor_grid and cmor_set_grid_mapping)

• Define the variables to be written by CMOR, indicate which axes are associated
with each variable, and obtain "handles", to be used in the next step, which
uniquely identify each variable (cmor_variable). For each variable defined, this
function fills internal table entries containing file attributes passed by the user or
obtained from a MIP table, along with coordinate variables and other related
information. Thus, nearly all of the file's metadata is collected during this step.

• Write an array of data that includes one or more time samples for a defined variable
(cmor_write). This step will typically be repeated to output additional variables or
to append additional time samples of data.

• Close one or all files created by CMOR (cmor_close)

There is an additional function (cmor_zfactor), which enables one to define metadata
associated with dimensionless vertical coordinates.

CMOR was designed to reduce the effort required of those contributing data to various
MIPs. An important aim was to minimize any transformations that the user would have to
perform on the their original data structures to meet the MIP requirements. Toward this
end, the code allows the following flexibility (with the MIP requirements obtained by
CMOR from the appropriate MIP table and automatically applied):

• The input data can be structured with dimensions in any order and with coordinate
values either increasing or decreasing monotonically; CMOR will rearrange them
to meet the MIP's requirements before writing out the data.

 4

• The input data and coordinate values can be provided in an array declared to be
whatever "type" is convenient for the user (e.g., in the case of coordinate data, the
user might pass type “real” values (32-bit floating-point numbers on most
platforms) even though the output will be written type double (64-bit IEEE
floating-point); CMOR will transform the data to the required type before writing.

• The input data can be provided in units different from what is required by a MIP.
If those units can be transformed to the correct units using the udunits (version 2)
software (see http://my.unidata.ucar.edu/content/software/udunits/), then CMOR
performs the transformation before writing the data. Otherwise, CMOR will return
an error. Time units are handled via the built-in cdtime interface7

• So-called "scalar dimensions" (sometimes referred to as "singleton dimensions")
are automatically inserted by CMOR. Thus, for example, the user can provide
surface air temperature (at 2 meters) as a function of longitude, latitude, and time,
and CMOR adds as a "coordinate" attribute the "height" dimension, consistent with
the metadata requirements of CF. If the model output does not conform with the
MIP requirements (e.g., carries temperature at 1.5 m instead of 2 m), then the user
can override the MIP table specifications.

The code does not, however, include a capability to interpolate data, either in the vertical
or horizontally. If a user stores data on model levels, but a MIP requests it on standard
pressure levels, then the user must interpolate before passing the data to CMOR.

The output resulting from CMOR is "self-describing" and includes metadata summarized
below, organized by attribute type (global, coordinate, or variable attributes) and by its
source (specified by the user or in a MIP table, or generated by CMOR).

Global attributes typically provided by the MIP table or generated by CMOR:

• title, identification of the project, experiment, and table.
• Conventions, ('CF-1.4')
• history, any user-provided history along with a "timestamp" generated by

CMOR and a statement that the data conform with both the CF standards and those
of a particular MIP.

• project_id, scientific project that inspired this simulation (e.g., CMIP5)
• table_id, MIP table used to define variable.
• Modeling_realm(s) to which the variable belongs (e.g., ocean, land, atmosphere,

etc.).
• tracking_id, a unique identification string generated by uuid, which is useful at

least within the ESG distributed data archive.
• cmor_version, version of the library used to generate the files.
• frequency,the approximate time-sampling interval for a time-series of data.
• creation_date, the date and time (UTZ) that the file was created.

Global attributes typically provided by the user in a call to a CMOR function:

7 Cdtime is now built into CMOR. Therefore linking against cdms is no longer necessary.

 5

• institution, identifying the modeling center contributing the output.
• institute_id, a shorter identifying name of the modeling center (which would

be appropriate for labeling plots in which results from many models might appear).
• source, identifying the model version that generated the output.
• contact, providing the name and email of someone responsible for the data
• model_id, acronym to use for the model.
• experiment, a long name title for the experiment.
• experiment_id, a short name for the experiment.
• forcing, forcing used during this experiment.
• history, providing an "audit trail" for the data, which will be supplemented with

CMOR-generated information described above.
• references, typically containing documentation of the model and the model

simulation.
• comment, typically including initialization and spin-up information for the

simulation, and for climate change runs a description of forcing applied (e.g.,
greenhouse gas, sulfate aerosol directect effects, volcanoes, ozone changes, solar
variability).

• realization, an integer distinguishing among simulations that differ only from
different equally reasonable initial conditions. This number should be greater than
or equal to 1. CMOR will reset this to 0 automatically for “fixed” frequency (i.e.
time-independent fields)

• initialization_method, an integer distinguishing among simulations that
differ only in the method of initialization. This number should be greater than or
equal to 1.

• physics_version, an integer indicating which of several closely related
physics versions of a model produced the simulation.

Note: additional global attributes can be added by the user via the
cmor_set_cur_dataset_attribute function (see below).

Coordinate attributes typically provided by a MIP table or generated by CMOR:

• standard_name, as defined in the CF standard name table.
• units, specifying the units for the coordinate variable.
• axis, indicating whether axis is of type x, y, z, t, or none of these.
• bounds, (when appropriate) indicating where the cell bounds are stored.
• positive, (when appropriate) indicating whether a vertical coordinate increases

upward or downward.
• formula_terms, (when appropriate) providing information needed to transform

from a dimensionless vertical coordinate to the actual location (e.g., from sigma-
level to pressure).

 6

Coordinate or grid mappting attributes typically provided by the user in a call to a CMOR
function:

• calendar, (when appropriate) indicating the calendar type assumed by the
model.

• grid_mapping_name and the names of various mapping parameters. See CF
conventions at: (http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.1/cf-
conventions.html#grid-mappings-and-projections)

Variable attributes typically provided by a MIP table or generated by CMOR:

• standard_name as defined in the CF standard name table.
• units, specifying the units for the variable.
• long_name, describing the variable and useful as a title on plots.
• missing_value and _FillValue, specifying how missing data will be

identified.
• cell_methods, (when appropriate) typically providing information concerning

calculation of means or climatologies, which may be supplemented by information
provided by the user.

• comment, providing clarifying information concerning the variable (e.g., whether
precipitation includes both liquid and solid forms of precipitation).

• history, indicating what CMOR has done to the user supplied data (e.g.,
transforming its units or rearranging its order to be consistent with the MIP
requirements)

• coordinates, (when appropriate) supplying either scalar (singleton) dimension
information or the name of the labels containing names of geographical regions.

• associated_files, files that contain metadata that applies to this variable.
Presently it point to the gridspec file and the files containing cellArea and
cellVolume whether or not they actually exists, it also include a URL if present in
the tables. This URL points to the top directory structure where the data will be
accessible online.

Variable attributes typically provided by the user in a call to a CMOR function:

• original_name, containing the name of the variable as it is known at the user's
home institution.

• original_units, the units of the data passed to CMOR.
• history, (when appropriate) information concerning processing of the variable

prior to sending it to CMOR. (This information may be supplemented by further
history information generated by CMOR.)

• comment, (when appropriate) providing miscellaneous information concerning the
variable, which will supplement any comment contained in the MIP table.

As is evident from the above summary of metadata, a substantial fraction of the
information is defined in the MIP tables, which explains why writing MIP output through

 7

CMOR is much easier than writing data without the help of the MIP tables. Besides the
attribute information, the MIP tables also include information that controls the structure of
the output and allows CMOR to apply some rudimentary quality assurance checks.
Among this ancillary information in the MIP tables is the following:

• The direction each coordinate should be stored when it is output (i.e., either in
order of increasing or decreasing values). The user need not be concerned with this
since, if necessary, CMOR will reorder the coordinate values and the data.

• The acceptable values for coordinates (e.g., for a pressure coordinate axis, for
example, perhaps the WCRP standard pressure levels).

• The acceptable values for various arguments passed to CMOR functions (e.g.,
acceptable calendars, experiment i.d.'s, etc.)

• The "type" of each output array (whether real, double precision, or integer). The
user need not be concerned with this since, if necessary, CMOR will convert the
data to the specified type.

• The order of the dimensions for output arrays. The user need not be concerned with
this since, if necessary, CMOR will reorder the data consistent with the specified
dimension order.

• The normally applied values for "scalar dimensions" (i.e., "singleton dimensions").
• The range of acceptable values for output arrays.
• The acceptable range for the spatial mean of the absolute value of all elements in

output arrays.
• The minimal global attributes required.

Acknowledgements

Several individuals have supported the development of the CMOR1 software and provided
encouragement, including Dean Williams, Dave Bader, and Peter Gleckler. Jonathan
Gregory, Jim Boyle, and Bob Drach all provided valuable suggestions on how to simplify
or in other ways improve the design of this software, and we particularly appreciate the
time they spent reading and thinking about this problem. Jim Boyle additionally helped in
a number of other ways, including porting CMOR to various platforms. Brian Eaton
provided his usual careful and thoughtful responses to questions about CF compliance.
Finally, we appreciate the encouragement expressed by the WGCM for developing
CMOR.

The complete rewrite of CMOR, along with the new capabilities added to version 2, was
implemented by Charles Doutriaux. We thank Dean Williams, Bob Drach, Renata
McCoy, Jim Boyle, and the British Atmospheric Data Center (BADC).

 8

Description of CMOR Functions

Note: In the following, all arguments should be passed using keywords (to improve

readability and flexibility in ordering the arguments). Those arguments appearing
below that are followed by an equal sign may be optional and, if not passed by the
user, are assigned the default value that follows the equal sign. The information in
a MIP-specific input table determines whether or not an argument shown in
brackets is optional or required, and pro vides MIP-specific default values for some
parameters. All arguments not in brackets and not followed by an equal sign are
always required.

Three versions of each function are shown below. The first one is for Fortran
(green text) the second for C (blue text), and the third for Python (orange text). In
the following, text that applies to only one of the coding languages appears in the
appropriate color.

Some of the arguments passed to CMOR (e.g., names of variables and axes are
only unambiguously defined in the context of a specific CMOR table, and in the
Fortran version of the functions this is specified by one of the function arguments,
whereas in the C and Python versions it is specified through a call to
cmor_load_table and cmor_set_table.

All functions are type “integer”. If a function results in an error, an “exception”
will be raised in the Python version (otherwise None will be returned), and in either
the Fortran or C versions, the error will be indicated by the integer returned by the
function itself. In C an integer other than 0 will be returned, and in Fortran errors
will result in a negative integer (except in the case of cmor_grid, which will return
a positive integer).

If no error is encountered, some functions will return information needed by the
user in subsequent calls to CMOR. In almost all cases this information is indicated
by the value of a single integer that in Fortran and Python is returned as the value
of the function itself, whereas in C it is returned as an output argument). There are
two cases in the Fortran version of CMOR, however, when a string argument may
be set by CMOR (cmor_close and cmor_create_output_path). These are the only
cases when the value of any of the Fortran functions’s arguments might be
modified by CMOR.

 9

Initialize CMOR

Fortran: error_flag = cmor_setup(inpath='./', netcdf_file_action=CMOR_PRESERVE,

set_verbosity=CMOR_NORMAL, exit_control=CMOR_NORMAL, logfile,
create_subdirectories)

C: error_flag = cmor_setup(char *inpath, int *netcdf_file_action, int *set_verbosity, int
*exit_control, char*logfile, int *create_subdirectories)

Python: setup(inpath='.', netcdf_file_action=CMOR_PRESERVE,
set_verbosity=CMOR_NORMAL, exit_control=CMOR_NORMAL, logfile=None,
create_subdirectories=1)

Description: Initialize CMOR, specify path to MIP table(s) that will be read by
CMOR, specify whether existing output files will be overwritten, and specify how
error messages will be handled. The default “logfile” is “standard error”.

Arguments:
[inpath] = path to directory where the needed MIP-specific tables reside.
[netcdf_file_action] = controls handling of existing netCDF files. If the integer

value passed is CMOR_REPLACE, a new file will be created; any existing
file with the same name as the one CMOR is trying to create will be
overwritten. If the value is CMOR_APPEND, an existing file will be
appended; if the file does not exist, it will be created. If the value is
CMOR_PRESERVE, a new file will be created unless a file by the same
name already exists, in which case the program will error exit.8 To generate
a NetCDF file in the “CLASSIC” NetCDF3 format, a “_3” should be
appended to the above parameters (e.g., CMOR_APPEND would become
CMOR_APPEND_3).

 [set_verbosity] controls how informational messages and error messages generated
by CMOR are handled. If set_verbosity=CMOR_NORMAL, errors and
warnings will be sent to the standard error device (typically the user's
screen). If verbosity=CMOR_QUIET, then only error messages will be sent
(and warnings will be suppressed.

[exit_control] determines if errors will trigger program to exit:
CMOR_EXIT_ON_MAJOR = stop only on critical error;
CMOR_NORMAL = stop only if severe errors;
CMOR_EXIT_ON_WARNINGS = stop even after minor errors detected.

[create_subdirectories] do we want to create the correct path subdirectory structure
or simply dump the files wherever cmor_dataset will point to.

\Returns upon succss:

Fortran: 0
C: 0
Python: None

8 In the Fortran version only, to preserve compatibility with CMOR1, the character strings “replace”,
“append”, and “preserve” may be passed instead of the integers CMOR_REPLACE, CMOR_APPEND, and
CMOR_PRESERVE, respectively, but this option is deprecated.

 10

Define a Dataset

Fortran: error_flag = cmor_dataset(outpath, experiment_id, institution, source, calendar,

[realization=1], [contact], [history], [comment], [references], [leap_year],
[leap_month], [month_lengths],[model_id],[forcing],
[initialization_method],[physics_version],[institute_id])

C: error_flag = cmor_dataset(char *outpath, char *experiment_id, char *institution, char
*source, char *calendar, int realization, char *contact, char *history, char
*comment, char *references, int leap_year, int leap_month, int month_lengths[12],
char *model_id, char *forcing,
int initialization_method, int physics_version, char *institute_id)

Python: dataset(experiment_id, institution, source, calendar, outpath='.', realization=1,
contact="", history="", comment="", references="", leap_year=None,
leap_month=None, month_lengths=None, model_id=””, forcing=””,
initialization_method=None, physics_version=None, institute_id=””)

Description: This function provides information to CMOR that is common to all
output files that will be written. The "dataset" defined by this function refers to
some or all of the output from a single model simulation (i.e., output from a single
realization of a single experiment from a single model). Only one dataset can be
defined at any time, but the dataset can be closed (by calling cmor_close()), and
then another dataset can be defined by calling cmor_dataset. Note that after a new
dataset is defined, all axes and variables must be defined; axes and variables
defined earlier are not associated with the new dataset.

Arguments:
outpath = path where all output files in this dataset will be written (including both

model output netCDF files and log and error files). The log and error files
will be placed in this directory, but the model output files will be placed in
subdirectories. By default the subdirectory tree will be generated by
CMOR, if necessary, consistent with the following structure: <activity>/
<institute_id>/<model_id>/<experiment>/<frequency>/<modeling_realm>/
<variable_name>/<ensemble member>
Notes: The necessary information is sent to CMOR as arguments except:

institute_id can also be set via the command:
cmor_set_cur_dataset_attribute(“institute_id”, <your
institute>)

frequency is determined from the “approximate_interval” defined in
the MIP table

modeling_realm is read from the MIP table either from the table
headers but is overwritten by the variable definition if it
contains such information.

One can turn off the creation of the subdirectories via the keyword
“create_subdirectories” in the cmor_setup call.

 11

experiment_id = character string identifying the experiment within the project that
generated the data (e.g., 'control', 'perturbation', etc.) See individual MIP
home pages for the official experiment designations (or see the MIP-table
list of "expt_id_ok" acceptable i.d.'s). Either the short “experiment i.d.” or
the longer “experiment name” may be passed to CMOR.

institution = character string identifying the institution that generated the data [e.g.,
'NCAR (National Center for Atmospheric Research, Boulder, CO, USA)']

source = character string identifying the model version as it is referred to in public
talks. Additionally, this attribute must include the year (i.e., model vintage)
when this model version was first used in a scientific application. Finally, it
should include information concerning the component models. The
following template should be used in constructing this string:
'[model_name] [year] atmosphere: [model_name] ([technical_name],
[resolution_and_levels]); ocean: [model_name] ([technical_name],
[resolution_and_levels]); sea ice: [model_name] ([technical_name]); land:
[model_name] ([technical_name])'' As an example, "source" might contain
the string: 'CCSM2 2002 atmosphere: CAM2 (cam2_0_brnchT_itea_2,
T42L26); ocean: POP (pop2_0_ver_1.4.3, 2x3L15); sea ice: CSIM4; land:
CLM2.0'. For some MIP's it might be appropriate to list only a single
component, in which case the descriptor (e.g., 'atmosphere') may be omitted
along with the other model components (e.g., 'CAM2 2002
(cam2_0_brnchT_itea_2, T42L26)'. Additional explanatory information
may follow the required information.

calendar = CF-compliant calendar specification (e.g., 'gregorian', 'noleap', etc.)
This argument must be included even in the case of a non-standard
calendar, in which case it must not be given one of the calendars currently
defined by CF ('gregorian', 'standard', 'proleptic_gregorian', 'noleap',
'365_day', '360_day', 'julian', and 'none'), and it must not be completely
blank or a null string. It would be acceptable, for example, to assign
'non_standard' to this argument in the case of a non-standard calendar.

[realization] = an integer distinguishing among members of an ensemble of
simulations (e.g., 1, 2, 3, etc.). If only a single simulation was performed,
then this argument should be given the value 1 (which is also the default
value). CMOR will reset this to 0 automatically for “fixed” frequency (i.e.
time-independent fields)

[contact] = name and contact information (e.g., email, address, phone number) of
person who should be contacted for more information about the data.

[history] = audit trail for modifications to the original data, each modification
typically preceded by a "timestamp". The "history" attribute provided here
will be a global one and should not depend on which variable is contained
in the file. A variable-specific "history" can also be included in calling
cmor_variable, described below.

[comment] = miscellaneous information about the data or methods used to produce
it. Each MIP may encourage the user to provide different information here.
For example, the user may be asked to include a description of how the
initial conditions for a simulation were specified and how the model was

 12

spun-up (including the length of the spin-up period), or for climate change
runs a description of forcing applied (e.g., greenhouse gas, sulfate aerosol
directect effects, volcanoes, ozone changes, solar variability).

[references] = Published or web-based references that describe the data or methods
used to produce it. Typically, the user should provide references describing
the model formulation here.

[leap_year] = for non-standard calendars (otherwise omit), an integer, indicating an
example of a leap year.

[leap_month] = for non-standard calendars (otherwise omit), an integer in the range
1-12, specifying which month is lengthened by a day in leap years
(1=January).

[month_lengths] = for non-standard calendars (otherwise omit), an integer vector of
size 12, specifying the number of days in the months from January through
December (in a non-leap year).

[model_id] = a string containing an acronym to use for this model.9
[forcing] = a string containing the forcing used for this experiment.9

 [initialization_method] = an integer referring to the initialization method used. In C
passing 0 means omitting it.
 [physics_version] = an integer referring to the physics used by the model, in C
passing 0 means omitting it

[institute_id] = an short acronym describing “institution”

Returns upon success:

Fortran: 0
C: 0
Python: None

Dealing with tables

Fortran: table_id = cmor_load_table(table)
C: error_flag = cmor_load_table(char *table, int *table_id)
Python: table_id = load_table(table)

Description: Loads a table to use later when defining cmor components. CMOR
will look first at the path as specified by table, and it doesn’t find a file there it will
prepend outpath from cmor_dataset.

Fortran: cmor_set_table(table_id)
C: error_flag = cmor_set_table(int table_id)
Python: table_id = set_table(table_id)

9 Note: For backward compatibility the model_id and forcing_id are “optionally” required, meaning they
become mandatory only if they appear as “required_global_attributes” in the CMOR table. For this reason, a
call to cmor_dataset without these would not return an error, until a call to cmor_write since it is table
dependent.

 13

Description: Sets the table referd by table_id as the table to look from when
defining CMOR components (variables, axes, grids, etc…).

Define an Axis

Fortran: axis_id = cmor_axis([table], table_entry, units, [length], [coord_vals],

[cell_bounds], [interval])
C: error_flag = cmor_axis(int *axis_id, char *table_entry, char *units, int length, void

*coord_vals, char type, void *cell_bounds, int cell_bounds_ndim, char *interval)
Python: axis_id = axis(table_entry, units=None, length=None, coord_vals=None,

cell_bounds=None, interval=None)

Description: Define an axis and pass the coordinate values associated with one of
the dimensions of the data to be written. This function returns a "handle" (axis_id)
that uniquely identifies the axis to be written. The axis_id will subsequently be
passed by the user to other CMOR functions. The cmor_axis function will
typically be repeatedly invoked to define all axes. The axis specified by the
table_entry argument must be found in the currently “set” CMOR table, as
specified by the cmor_load_table and cmor_set_table functions, or as an option, it
can be provided in the Fortran version (for backward compatibility) by the now
deprecated “table” keyword argument. There normally is no need to call this
function in the case of a singleton (scalar) dimension unless the MIP recommended
(or required) coordinate value (or cell_bounds) are inconsistent with what the user
can supply, or unless the user wants to define the "interval" attribute.

Arguments:
[table] = character string containing the filename of the MIP-specific table where

the axis defined here appears. (e.g., ‘CMIP5_table_Amon’,
'IPCC_table_A1', 'AMIP_table_1a', 'AMIP_table_2', 'CMIP_table_2', etc.).
In CMOR2 this is an optional argument and is deprecated because the table
can be specified through the cmor_load_table and cmor_set_table functions.

axis_id = the “handle”: a positive integer returned by CMOR, which uniquely
identifies the axis stored in this call to cmor_axis and subsequently can be
used in calls to cmor_write.

table_entry = name of the axis (as it appears in the MIP table) that will be defined
by this function.

units = units associated with the coordinates passed in coord_vals and cell_bounds.
(These are the units of the user's coordinate values, which, if CMOR is built
with udunits (as is required in version 2), may differ from the units of the
coordinates written to the netCDF file by CMOR. For non-standard
calendars (e.g., models with no leap year), conversion of time values can be
made only if CMOR is built with CDMS.) These units must be recognized
by udunits or must be identical to the units specified in the MIP table. In
the case of a dimensionless vertical coordinate or in the case of a non-

 14

numerical axis (like geographical region), either set units='none', or,
optionally, set units='1'.

[length] = integer specifying the number of elements that CMOR should extract
from the coord_vals array (normally length will be the size of the array
itself). For a simple “index axis” (i.e., an axis without coordinate values),
this specifies the length of the dimension. In the Fortran and Python
versions of the function, this argument is not always required (except in the
case of a simple index axis); if omitted “length” will be the size of the
coord_vals array,

[coord_vals] = 1-d array (single precision float, double precision float, or, for
labels, character strings) containing coordinate values, ordered consistently
with the data array that will be passed by the user to CMOR through
function cmor_write (see documentation below). This argument is required
except if: 1) the axis is a simple “index axis” (i.e., an axis without
coordinate values), or 2) for a time coordinate, the user intends to pass the
coordinate values when the cmor_write function is called. Note that the
coordinate values must be ordered monotonically, so, for example, in the
case of longitudes that might have the values, 0., 10., 20, ... 170., 180., 190.,
200., ... 340., 350., passing the (equivalent) values, 0., 10., 20, ... 170.,
180., -170., -160., ... -20., -10. is forbidden. In the case of time-coordinate
values, if cell bounds are also passed, then CMOR will first check that each
coordinate value is not outside its associated cell bounds; subsequently,
however, the user-defined coordinate value will be replaced by the mid-
point of the interval defined by its bounds, and it is this value that will be
written to the netCDF file. In the case of character string coord_vals there
are no cell_bounds, but for the C version of the function, the argument
cell_bounds_ndim is used to specify the length of the strings in the
coord_val array (i.e., the array will be dimensioned
[length][cell_bounds_ndim]).

type = type of the coord_vals/bnds passed, which can be ‘d’ (double), ‘f’ (float), ‘l’
(long) or ‘i’ (int).

[cell_bounds] = 1-d or 2-d array (of the same type as coord_vals) containing cell
bounds, which should be in the same units as coord_vals (specified in the
"units" argument above) and should be ordered in the same way as
coord_vals. In the case of a 1-d array, the size is one more than the size of
coord_vals and the cells must be contiguous. In the case of a 2-d array, it is
dimensioned (2, n) where n is the size of coord_vals (see CF standard
document, http://www.cgd.ucar.edu/cms/eaton/cf-metadata, for further
information). This argument may be omitted when cell bounds are not
required. It must be omitted if coord_vals is omitted.

cell_bounds_ndim = This argument only appears in the the C version of this
function. Except in the case of a character string axis, it specifies the rank
of the cell_bounds array: if 1, the bounds array will contain n+1 elements,
where n is length of coords and the cells must be contiguous, whereas if 2,
the dimension will be (n,2) in C order. Pass 0 if no cell_bounds values have
been passed. In the special case of a character string axis, this argument is

 15

used to specify the length of the strings in the coord_val array (i.e., the array
will be dimensioned [length][cell_bounds_ndim]).

[interval] = Supplemental information that will be included in the cell_methods
attribute, which is typically defined for the time axis in order to describe the
sampling interval. This string should be of the form: "value unit comment:
anything" (where "comment:" and anything may always be omitted). For
monthly mean data sampled every 15 minutes, for example, interval = "15
minutes".

Returns:

Fortran: a negative integer if an error is encountered; otherwise returns a
positive integer (the “handle”) uniquely identifying the axis ..

C: 0 upon success.
Python: upon success, a positive integer (the “handle”) uniquely identifying

the axis, or if an error is encountered an exception is raised.

Define an Axis Attribute

Fortran: Not implemented because it is not needed for CMIP5.
C: error_flag = cmor_set_axis_attribute(int axis_id, char *attribute_name, char type, void

*value)
Python: Not implemented because it is not needed for CMIP5.

Description: Defines an attribute to be associated with the axis specified by the
axis_id. This is not likely to be needed in preparing CMIP5 output.

Arguments:
axis_id = the “handle” returned by cmor_axis (when the axis was defined), which

will become better described by the attribute defined in this function.
attribute_name = name of the attribute
type = type of the attribute value passed. This can be ‘d’ (double), ‘f’ (float), ‘l’

(long), ‘i’ (int), or ‘c’ (char)
value = whatever value you wish to set the attribute to (type defined by type

argument)

Return upon success:

C: 0

Retrieve an Axis Attribute

Fortran: Not implemented because it is not needed for CMIP5.
C: error_flag = cmor_get_axis_attribute(int axis_id, char *attribute_name, char type, void

*value)
Python: Not implemented because it is not needed for CMIP5.

 16

Description: retrieves an attribute value set for the axis sepcified by the axis_id.
This is not likely to be needed in preparing CMIP5 output.

Arguments:
axis_id = the “handle” returned by cmor_axis (when the axis was defined) with

which the attribute requested is associated..
attribute_name = name of the attribute
type = type of the attribute value to be retrieved. This can be ‘d’ (double), ‘f’

(float), ‘l’ (long), ‘i’ (int), or ‘c’ (char).
value = the argument that will accept the retrieved attribute.

Return upon success:

C: 0

Inquire whether an Axis Attribute Exists

 Fortran: Not implemented because it is not needed for CMIP5.
C: error_flag = cmor_has_axis_attribute(int axis_id, char *attribute_name)
Python: Not implemented because it is not needed for CMIP5.

Description: Determines whether an attribute exists and is associated with the
variable specified by variable_id, which is a handle returned to the user by a
previous call to cmor_variable.

Arguments:
axis_id = the “handle” specifying which axis is of interest. An axis_id is returned

by cmor_variable each time a variable is defined).
attribute_name = name of the attribute of interest.

Returns upon success (i.e., the attribute was found):

C: 0

Define a Grid

Fortran: grid_id = cmor_grid(axis_ids, latitude, longitude, [latitude_vertices],
[longitude_vertices],[nvertices])

C: error_flag = cmor_grid(int *grid_id, int ndims, int *axis_ids, char type, void *latitude,
void *longitude, int nvertices, void *latitude_vertices, void *longitude_vertices)

Python: grid_id = grid(axis_ids, latitude, longitude, latitude_vertices=None,
longitude_vertices=None, nvertices=0)

Description: Define a grid to be associated with data, including the latitude and
longitude arrays. The grid can be structured with up to 6 dimensions. These

 17

dimensions, which may be simple “index” axes, must be defined via cmor_axis
prior to calling cmor_grid. This function returns a "handle" (grid_id) that uniquely
identifies the grid (and its data/metadata) to be written. The grid_id will
subsequently be passed by the user to other CMOR functions. The cmor_grid
function will typically be invoked to define each grid necessary for the experiment
(e.g ocean grid, vegetation grid, atmosphere grid, etc…). There is no need to call
this function in the case of a Cartesian lat/lon grid. In this case, simply define the
latitude and longitude axes and pass their id’s (“handles”) to cmor_variable. Grids
can be time dependent as well, in this case the latitude, longitude and
vertices_latitude, vertices_longitude must be defined separately via
cmor_time_varying_grid_coordinate. Note that in this case the number of vertices
MUST be passed when calling cmor_grid.

Arguments:
grid_id = the “handle”: a positive integer returned by CMOR, which uniquely

identifies the grid defined in this call to CMOR and subsequently can be
used in calls to CMOR.

ndims = number of dimensions needed to define the grid. Namely the number of
elements from axis_ids that will be used.

axis_ids = array containing the axis_s returned by cmor_axis when defining the
axes constituing the grid.

[latitude] = array containing the grid’s latitude information (ndim dimensions),
optional ONLY in the case of time varying grids.

]longitude] = array containing the grid’s longitude information (ndim dimensions),
optional ONLY in the case of time varying grids

[nvertices] = length of vertices axis,Fortran and Python can figure this out if
latitude_vertices is passed. But in case of time-varying grids this is
necessary in order to prepare the “Vertices” variable correctly.

[latitude_vertices] = array containing the grid’s latitude vertices information
(ndim+1 dimensions). The vertices dimension must be the fastest varying
dimension of the array (i.e first one in Fortran, last one in C, last one in
Python)

[longitude_vertices] = array containing the grid’s longitude vertices information
(ndim+1 dimensions). The vertices dimension must be the fastest varying
dimension of the array (i.e first one in Fortran, last one in C, last one in
Python)

Returns:

Fortran: a positive integer if an error is encountered; otherwise returns a
negative integer (the “handle”) uniquely identifying the grid.

C: 0 upon success.
Python: upon success, a positive integer (the “handle”) uniquely identifying

the axis, or if an error is encountered an exception is raised.
Note:

 18

This function used to take an optional extra argument (up to CMOR2.0rc4
included), it is now not needed anymore as cellArea and cellVolume files
are written in a separate file.

Define Grid Mapping Parameters

Fortran: error_flag = cmor_set_grid_mapping(grid_id, mapping_name, parameter_names,

parameter_values, parameter_units)
C: error_flag = cmor_set_grid_mapping(int grid_id, char *mapping_name, int

nparameters, char **parameter_names, int lparameters, double parameter_values[],
char **parameter_units, int lunits)

Python: set_grid_mapping(grid_id, mapping_name, parameter_names,
parameter_values=None, parameter_units=None)

Description: Define the grid mapping parameters associated with a grid (see CF
conventions for more info on which parameters to set). Checks validity of
parameter names and units. Additional mapping names and parameter names can be
defined via the MIP table.

Arguments:
grid_id = the “handle” returned by a previous call to cmor_grid, indicating which

grid the mapping parameters should be associated with.
mapping_name = name of the mapping (see cf conventions). This name dictates

which parameters should be set and for some parameters restricts their
possible values or range. New mapping names can be added via MIP
tables.

nparameters = number of parameters set.
parameter_names = array (list for Python) of strings containing the names of the

parameters to set. In the case of “standard_parallel”, CF allows either 1 or
2 parallels to be specified (i.e. the attribute standard_parallel may be an
array of length 2). In the case of 2 parallels, CMOR requires the user to
specify these as separate parameters, named standard_parallel_1 and
standard_parallel_2, but then the two parameters will be stored in an array,
consistent with CF. In the case of a single parallel, the name
standard_parallel should be specified. In the C version of this function,
parameter_names is declared of length [nparameters][lparameters], where
lparameters in the length of each string array element (see below). In
Python parameter_names can be defined as a dictionary whose keys
represent the parameter_names. The value associated with each key can be
either a list [float, str] (or [str,float]) representing the value/units of each
parameter, or another dictionary containing the keys “value” and “units”. If
these condition are fulfilled, then parameter_units and parameter_values are
optional and would be ignored if passed.

lparameters = length of each element of the string array. If, for example,
parameter_names includes 5 parameters, each 24 characters long (i.e., it is
declared [5][24]), you would pass lparameters=24.

 19

parameter_values = array containing the values associated with each parameter. In
Python this is optional if parameter_names is a dictionary containing the
values and units.

parameter_units = array (list for Python) of string containing the units of the
parameters to set. In C parameter_units is declared of length
[nparameters][lunits]. In Python it is optional if parameter_names is a
dictionary containing the value and units.

lunits = length of each elements of the units string array. i.e. if parameters_units is
declared [5][24] you would pass 24 because each elements has 24
characters.

Returns upon success:

Fortran: 0
C: 0
Python: None

Define a Coordinate Variable for a Time Varying Grid

Fortran: coord_var_id = cmor_time_varying_grid_coordinate(grid_id, table_entry, units,
missing_value)

C: error_flag = cmor_time_varying_grid_coordinate(int *coord_var_id, int grid_id, char
*table_entry, char *units, char type, void *missing, [int *coordinate_type]) {
Python: coord_var_id = time_varying_grid_coordinate(grid_id, table_entry, units,

[missing_value])

Description: Define a grid to be associated with data, including the latitude and
longitude arrays. The grid can be structured with up to 6 dimensions. These
dimensions, which may be simple “index” axes, must be defined via cmor_axis
prior to calling cmor_grid. This function returns a "handle" (grid_id) that uniquely
identifies the grid (and its data/metadata) to be written. The grid_id will
subsequently be passed by the user to other CMOR functions. The cmor_grid
function will typically be invoked to define each grid necessary for the experiment
(e.g ocean grid, vegetation grid, atmosphere grid, etc…). There is no need to call
this function in the case of a Cartesian lat/lon grid. In this case, simply define the
latitude and longitude axes and pass their id’s (“handles”) to cmor_variable.

Arguments:
coord_var_id = the “handle”: a positive integer returned by this function, which

uniquely identifies the variable and can be used in subsequent calls to
CMOR.

grid_id =the value returned by cmor_grid when the grid was created.
table_entry = name of the variable (as it appears in the MIP table) that this function

defines.
units = units of the data that will be passed to CMOR by function cmor_write.

These units may differ from the units of the data output by CMOR.

 20

Whenever possible, this string should be interpretable by udunits (see
http://my.unitdata.ucar.edu/content/software/udunits/). In the case of
dimensionless quantities the units should be specified consistent with the
CF conventions, so for example: percent, units='percent'; for a fraction,
units='1'; for parts per million, units='1e-6', etc.).

type = type of the missing_value, which must be the same as the type of the array
that will be passed to cmor_write. The options are: ‘d’ (double), ‘f’ (float),
‘l’ (long) or ‘i’ (int).

 [missing_value] = scalar that is used to indicate missing data for this variable. It
must be the same type as the data that will be passed to cmor_write. This
missing_value will in general be replaced by a standard missing_value
specified in the MIP table. If there are no missing data, and the user
chooses not to declare the missing value, then this argument may be either
omitted or assigned the value 'none' (i.e., missing_value='none').

[coordinate_type] = place holder for future implementation, unused, pass NULL

Returns:

Fortran: a positive integer if an error is encountered; otherwise returns a
negative integer (the “handle”) uniquely identifying the grid.

C: 0 upon success.
Python: upon success, a positive integer (the “handle”) uniquely identifying

the axis, or if an error is encountered an exception is raised.

Provide Non-Dimensional Vertical Coordinate Information

Fortran: zfactor_id = cmor_zfactor(zaxis_id, zfactor_name, [axis_ids], [units],

zfactor_values, zfactor_bounds)
C: error_flag = cmor_zfactor (int *zfactor_id,int zaxis_id, char *zfactor_name, char *units,

int ndims, int axis_ids[], char type, void *zfactor_values, void *zfactor_bounds)
Python: zfactor_id = zfactor(zaxis_id, zfactor_name, units, axis_ids, type,

zfactor_values=None, zfactor_bounds=None)

Description: Define a factor needed to convert a non-dimensional vertical
coordinate (model level) to a physical location. For pressure, height, or depth, this
function is unnecessary, but for dimensionless coordinates it is needed. In the case
of atmospheric sigma coordinates, for example, a scalar parameter must be defined
indicating the top of the model, and the variable containing the surface pressure
must be identified. The parameters that must be defined for different vertical
dimensionless coordinates are listed in Appendix D of the CF convention document
(http://www.cgd.ucar.edu/cms/eaton/cf-metadata). Often bounds for the zfactors
will be needed (e.g., for hybrid sigma coordinates, "A's" and "B's" must be defined
both for the layers and, often more importantly, for the layer interfaces). This
function must be invoked for each z-factor required.

Arguments:

 21

zfactor_id = the “handle”: a positive integter returned by this function which
uniquely dentifies the grid defined in this call to CMOR and can
subsequently be used in calls to CMOR.

zaxis_id = an integer ("handle") returned by cmor_axis (which must have been
previously called) indicating which axis requires this factor.

zfactor_name = name of the z-factor (as it appears in the MIP table) that will be
defined by this function.

 [axis_ids] = an integer array containing the list of axis_id's (individually defined
by calls to cmor_axis), which the z-factor defined here is a function of (e.g.
for surface pressure, the array of i.d.'s would usually include the longitude,
latitude, and time axes.) The order of the axes must be consistent with the
array passed as param_values. If the parameter is a function of a single
dimension (e.g., model level), the single axis_id should be passed as an
array of rank one and length 1, not as a scalar. If the parameter is a scalar,
then this parameter may be omitted.

[units] = units associated with the z-factor passed in zfactor_values and
zfactor_bounds. (These are the units of the user's z-factors, which may
differ from the units of the z-factors written to the netCDF file by CMOR.) .
These units must be recognized by udunits or must be identical to the units
specified in the MIP table. In the case of a dimensionless z-factors, either
omit this argument, or set units='none', or set units='1'.

type = type of the zfactor_values and zfactor_bounds (if present) passed to this
function. This can be ‘d’ (double), ‘f’ (float), ‘l’ (long), ‘i’ (int), or ‘c’
(char).

[zfactor_values] = z-factor values associated with dimensionless vertical coordinate
identified by zaxis_id. If this z-factor is a function of time (e.g., surface
pressure for sigma coordinates), the user can omit this argument and instead
store the z-factor values by calling cmor_write. In that case the cmor_write
argument, "var_id", should be set to zfactor_id (returned by this function)
and the argument, "store_with", should be set to the variable id of the output
field that requires zfactor as part of its metadata. When many fields are a
function of the (dimensionless) model level, cmor_write will have to be
called several times, with the same zfactor_id, but with different variable
ids. If no values are passed, omit this argument.

[zfactor_bounds] = z-factor values associated with the cell bounds of the vertical
dimensionless coordinate. These values should be of the same type as the
zfactor_values (e.g., if zfactor_values is double precision, then
zfactor_bounds must also be double precision). If no bounds values are
passed, omit this argument or set zfactor = 'none'.

 22

Returns:
Fortran: a negative integer if an error is encountered; otherwise returns a

positive integer (the “handle”) uniquely identifying the z-factor.
C: 0 upon success.
Python: upon success, a positive integer (the “handle”) uniquely identifying

the z-factor, or if an error is encountered an exception is raised.

Define a Variable

Fortran: var_id = cmor_variable([table], table_entry, units, axis_ids, [missing_value],

[tolerance], [positive], [original_name], [history], [comment])
C: error_flag = int cmor_variable(int *var_id, char *table_entry, char *units, int ndims, int

axis_ids[], char type, void *missing, double *tolerance, char *positive,
char*original_name, char *history, char *comment)

Python: var_id = variable(table_entry, units, axis_ids, type='f', missing_value=None,
tolerance = 1.e-4, positive=None, original_name=None, history=None,
comment=None)

Description: Define a variable to be written by CMOR and indicate which axes are
associated with it. This function prepares CMOR to write the file that will contain
the data for this variable. This function returns a "handle" (var_id), uniquely
identifying the variable, which will subsequently be passed as an argument to the
cmor_write function. The variable specified by the table_entry argument must be
found in the currently “set” CMOR table, as specified by the cmor_load_table and
cmor_set_table functions, or as an option, it can be provided in the Fortran version
(for backward compatibility) by the now deprecated “table” keyword argument.
The cmor_variable function will typically be repeatedly invoked to define other
variables. Note that backward compatibility was kept with the Fortran-only
optional “table” keyword. But it is now recommended to use cmor_load_table and
cmor_set_table instead (and necessary for C/Python).

Arguments:
var_id = the “handle”: a positive integer returned by this function, which uniquely

identifies the variable and can be used in subsequent calls to CMOR.
[table] = character string containing the filename of the MIP-specific table where

table_entry (described next) can be found (e.g., “CMIP5_table_amon”,
'IPCC_table_A1', 'AMIP_table_1a', 'AMIP_table_2', 'CMIP_table_2', etc.)
In CMOR2 this is an optional argument and is deprecated because the table
can be specified through the cmor_load_table and cmor_set_table functions.

table_entry = name of the variable (as it appears in the MIP table) that this function
defines.

units = units of the data that will be passed to CMOR by function cmor_write.
These units may differ from the units of the data output by CMOR.
Whenever possible, this string should be interpretable by udunits (see
http://my.unitdata.ucar.edu/content/software/udunits/). In the case of

 23

dimensionless quantities the units should be specified consistent with the
CF conventions, so for example: percent, units='percent'; for a fraction,
units='1'; for parts per million, units='1e-6', etc.).

ndims = number of axes the variable contains (i.e., the rank of the array), which in
fact is the number of elements in the axis_ids array that will be processed
by CMOR.

axis_ids = 1-d array containing integers returned by cmor_axis, which specifies, via
their “handles” (i.e., axis_ids), the axes associated with the variable that this
function defines. These handles should be ordered consistently with the data
that will be passed to CMOR through function cmor_write (see
documentation below). If the size of the 1-d array is larger than the number
of dimensions, the 'unused' dimension handles must be set to 0. Note that if
the handle of a single axis is passed, it must not be passed as a scalar but as
a rank 1 array of length 1. Scalar ("singleton") dimensions defined in the
MIP table may be omitted from axis_ids unless they have been explicitly
redefined by the user through calls to cmor_axis. A "singleton" dimension
that has been explicitly defined by the user should appear last in the list of
axis_ids if the array of data passed to cmor_write for this variable actually
omits this dimension; otherwise it should appear consistent with the
position of the axis in the array of data passed to cmor_write. In the case of
a non-cartesian grid, replace the values of the grid specific axes
(representing the lat/lon axes) with the single grid_id returned by
cmor_grid.

type = type of the missing_value, which must be the same as the type of the array
that will be passed to cmor_write. The options are: ‘d’ (double), ‘f’ (float),
‘l’ (long) or ‘i’ (int).

 [missing_value] = scalar that is used to indicate missing data for this variable. It
must be the same type as the data that will be passed to cmor_write. This
missing_value will in general be replaced by a standard missing_value
specified in the MIP table. If there are no missing data, and the user
chooses not to declare the missing value, then this argument may be either
omitted or assigned the value 'none' (i.e., missing_value='none').

[tolerance] = scalar (type real) indicating fractional tolerance allowed in missing
values found in the data. A value will be considered missing if it lies within
±tolerance*missing_value of missing_value. The default tolerance for real
and double precision missing values is 1.0e-4 and for integers 0. This
argument is ignored if the missing_value argument is not present.

[positive] = 'up' or 'down' depending on whether a user-passed vertical energy
(heat) flux or surface momentum flux (stress) input to CMOR is positive
when it is directed upward or downward, respectively. This information
will be used by CMOR to determine whether a sign change is necessary to
make the data consistent with the MIP requirements. This argument is
required for vertical energy and salt fluxes, for "flux correction" fields, and
for surface stress; it is ignored for all other variables.

[original_name] = the name of the variable as it is commonly known at the user's
home institute. If the variable passed to CMOR was computed in some

 24

simple way from two or more original fields (e.g., subtracting the upwelling
and downwelling fluxes to get a net flux), then it is recommended that this
be indicated in the "original_name" (e.g., "irup – irdown", where "irup" and
"irdown" are the names of the original fields that were subtracted). If more
complicated processing was required, this information would more naturally
be included in a "history" attribute for this variable, described next.

[history] = how the variable was processed before outputting through CMOR (e.g.,
give name(s) of the file(s) from which the data were read and indicate what
calculations were performed, such as interpolating to standard pressure
levels or adding 2 fluxes together). This information should allow someone
at the user's institute to reproduce the procedure that created the CMOR
output. Note that this history attribute is variable-specific, whereas the
history attribute defined by cmor_dataset provides information concerning
the model simulation itself or refers to processing procedures common to all
variables (for example, mapping model output from an irregular grid to a
Cartesian coordinate grid). Note that when appropriate, CMOR will also
indicate in the "history" attribute any operations it performs on the data
(e.g., scaling the data, changing the sign, changing its type, reordering the
dimensions, reversing a coordinate's direction or offsetting longitude). Any
user-defined history will precede the information generated by CMOR.

[comment] = additional notes concerning this variable can be included here.

Returns:

Fortran: a negative integer if an error is encountered; otherwise returns a
positive integer (the “handle”) uniquely identifying the variable.

C: 0 upon success.
Python: upon success, a positive integer (the “handle”) uniquely identifying

the variable, or if an error is encountered an exception is raised.

Define a Variable Attribute

Fortran: Not implemented because it is not needed for CMIP5
C: error_flag = cmor_set_variable_attribute(int variable_id, char *attribute_name, char

type, void *value)
Python: Not implemented because it is not needed for CMIP5

Description: Defines an attribute to be associated with the variable specified by the
variable_id. This function is unlikely to be called in preparing CMIP5 output.

Arguments:
variable_id = the “handle” returned by cmor_variable (when the variable was

defined), which will become better described by the attribute defined in this
function.

attribute_name = name of the attribute

 25

type = type of the attribute value passed, which can be ‘d’ (double), ‘f’ (float), ‘l’
(long), ‘i’ (int), or ‘c’ (char).

value = whatever value you wish to set the attribute to (type defined by type
argument).

Returns upon success:

C: 0

Retrieve a Variable Attribute

Fortran: Not implemented because it is not needed for CMIP5
C: error_flag = cmor_get_variable_attribute(int variable_id, char *attribute_name, char
type, void *value)
Python: Not implemented because it is not needed for CMIP5

Description: retrieves an attribute value set for the variable specified by the
variable_id. This function is unlikely to be called in preparing CMIP5 output.

Arguments:
variable_id = the “handle” returned by cmor_variable (when the variable was

defined) identifying which variable the attribute is associated with.
attribute_name = name of the attribute
type = type of the attribute value to be retrieved. This can be ‘d’ (double), ‘f’

(float), ‘l’ (long), ‘i’ (int), or ‘c’ (char)
value = the argument that will accept the retrieved attribute.

Returns upon success:

C: 0

Inquire whether a Variable Attribute Exists

Fortran: Not implemented because it is not needed for CMIP5.
C: error_flag = cmor_has_variable_attribute(int variable_id, char *attribute_name)
Python: Not implemented because it is not needed for CMIP5.

Description: Determines whether an attribute exists and is associated with the
variable specified by variable_id, which is a handle returned to the user by a
previous call to cmor_variable. This function is unlikely to be called in preparing
CMIP5 output.

Arguments:
variable_id = the “handle” specifying which variable is of interest. A variable_id is

returned by cmor_variable each time a variable is defined).
attribute_name = name of the attribute of interest.

 26

Returns upon success (i.e., if the attribute is found):

C: 0

Write Data to File

Fortran: error_flag = cmor_write(var_id, data, [file_suffix], [ntimes_passed], [time_vals],

[time_bnds], [store_with])
C: error_flag = cmor_write(int var_id,void *data, char type, char *file_suffix, int

ntimes_passed, double *time_vals, double *time_bounds, int *store_with)
Python: write(var_id, data, ntimes_passed=None, file_suffix="", time_vals=None,

time_bnds=None, store_with=None)

Description: For the variable identified by var_id, write an array of data that
includes one or more time samples. This function will typically be repeatedly
invoked to write other variables or append additional time samples of data. Note
that time-slices of data must be written chronologically.

Arguments:
var_id = integer returned by cmor_variable identifying the variable that will be

written by this function.
data = array of data written by this function (of rank<8). The rank of this array

should either be: (a) consistent with the number of axes that were defined
for it, or (b) it should be 1-dimensional, in which case the data must be
stored contiguously in memory. In case (a), an exception is that for a
variable that is a function of time and when only one "time-slice" is passed,
then the array can optionally omit this dimension. Thus, for a variable that
is a function of longitude, latitude, and time, for example, if only a single
time-slice is passed to cmor_write, the rank of array "data" may be declared
as either 2 or 3; when declared rank 3, the time-dimension will be size 1. It
is recommended (but not required) that the shape of data (i.e., the size of
each dimension) be consistent with those expected for this variable (based
on the axis definitions), but they are allowed to be larger (the extra values
beyond the defined dimension domain will be ignored). In any case the
dimension sizes (lengths) must obviously not be smaller than those defined
by the calls to cmor_axis.

type = type of variable array (“data”), which can be ‘d’ (double), ‘f’ (float), ‘l’
(long) or ‘i’ (int).

[file_suffix] = string that will be concatenated with a string automatically generated
by CMOR to form a unique filename where the output is written. This
suffix is only required when a time-sequence of output fields will not all be
written into a single file (i.e., two or more files will contain the output for
the variable). The file prefix generated by CMOR is of the form
variable_table, where variable is replaced by table_entry (i.e., the name of
the variable), and table is replaced by the table number (e.g., tas_A1 refers

 27

to surface air temperature as specified in table A1). permitted characters
will be: a-z, A-Z, 0-9, and “-”. There are no restrictions on the suffix except
that it must yield unique filenames and that it cannot contain any “_”.. If
the user supplies a suffix, the leading '_' should be omitted (e.g., pass '1979-
1988', not '_1979-1988'). Note that the suffix passed through cmor_write
remains in effect for the particular variable until (optionally) redefined by a
subsequent call. In the case of CMOR “Append mode” (in case the file
already existed before a call to cmor_setup), then file_suffix is to be used to
point to the original file, this value should reflect the FULL path where the
file can be found, not just the file name. CMOR2 will be smart enough to
figure out if a suffix was used when creating that file. Note that this file will
be first moved to a temporary file and eventually renamed to reflect the
additional times written to it.

[ntimes_passed] = integer number of time slices passed on this call. If omitted, the
number will be assumed to be the size of the time dimension of the data (if
there is a time dimension).

[time_vals] = 1-d array (must be double precision) time coordinate values
associated with the data array. This argument should appear only if the
time coordinate values were not passed in defining the time axis (i.e., in
calling cmor_axis). The units should be consistent with those passed as an
argument to cmor_axis in defining the time axis. If cell bounds are also
passed (see next argument, '[time-bnds]'), then CMOR will first check that
each coordinate value is not outside its associated cell bounds;
subsequently, however, the user-defined coordinate value will be replaced
by the mid-point of the interval defined by its bounds, and it is this value
that will be written to the netCDF file.

[time_bnds] = 2-d array (must be double precision) containing time bounds, which

should be in the same units as time_vals. If the time_vals argument is
omitted, this argument should also be omitted. The array should be
dimensioned (2, n) in Fortran, and (n,2) in C/Python, where n is the size of
time_vals (see CF standard document,
http://www.cgd.ucar.edu/cms/eaton/cf-metadata, for further information).

[store_with] = integer returned by cmor_variable identifying the variable that the
zfactor should be stored with. This argument must be defined when and
only when writing a z-factor. (See description of the zfactor function
above.)

Returns upon success:

Fortran: 0
C: 0
Python: None

 28

Close File(s)

Fortran: error_flag = cmor_close(var_id, file_name)
C: error_flag = cmor_close(void) or
C: error_flag = cmor_close_variable(int var_id, char *file_name)
Python: error_flag (or if name=True, returns the name of the file) = close(var_id=None,

file_name=False)

Description: Close a single file specified by optional argument var_id, or if the
argument is omitted (or void), close all files created by CMOR (including
log files). To be safe, before exiting any program that invokes CMOR, it is
often best to call this function with the argument omitted. When using C, to
close a single variable, use: cmor_close_variable(var_id), rather than
cmor_close(void). When using this function to close a single file, an
additional optional argument (of type “string”) can be included, into which
will be returned the file name created by CMOR.

Arguments:
 [var_id] = the “handle” identifying an individual variable and the associated output

file that will be closed by this function.
[file_name] = a string where the output file name will be stored. This option

provides a convenient method for the user to record the filename, which
might be needed on a subsequent call to CMOR, for example, in order to
append additional time samples to the file.

Returns:

Fortran: 0 upon success
C: 0 upon success

 Python: None if file_name=False or the name of the file if file_name=True

Define a Dataset Attribute

Fortran: error_flag = cmor_set_cur_dataset_attribute(name,value)
C: error_flag = cmor_set_cur_dataset_attribute(char *name, char *value, int optional)
Python: set_cur_dataset_attribute(name,value)

Description: Associate a global attribute with the current dataset. In CMIP5, this
function can be called to set, for example, “institute_id”, “initialization” and
“physics”.

Arguments:
name = name of the global attribute to set.
value = character string containing the value of this attribute.

 29

optional = an argument that is ignored. (Internally, CMOR calls this function and
needs this argument.)

Returns upon success:

Fortran: 0
C: 0
Python: None

Retrieve a Dataset Attribute

Fortran: error_flag = cmor_get_cur_dataset_attribute(name,result)
C: error_flag = cmor_get_cur_dataset_attribute(char *name, char *result)
Python: result = get_cur_dataset_attribute(name)

Description: Retrieves a global attribute associated with the current dataset.

Arguments:
name = name of the global attribute to retrieve.
result = string (or pointer to a string), which is returned by the function and

contains the retrieved global attribute (not for Python).

Returns upon success:

Fortran: 0
C: 0
Python: None

Inquire whether a Dataset Attribute Exists

Fortran: error_flag = cmor_has_cur_dataset_attribute(name)
C: error_flag = cmor_has_cur_dataset_attribute(char *name)
Python: error_flag = has_cur_dataset_attribute(name)

Description: Determines whether a global attribute is associated with the current
dataset.

Arguments:
name = name of the global attribute of interest.

Returns:

a negative integer if an error is encountered; otherwise returns 0.
0 upon success

 True if the attribute exists, False otherwise.

 30

Generate Output Path

Fortran: call cmor_create_output_path(var_id, path)
C: isfixed = cmor_create_output_path(int var_id, char *path)
Python: path = create_output_path(var_id)

Description: construct the output path, consistent with CMIP5 specifications, where
the file will be stored.

Arguments:
var_id = variable identification (as returned from cmor_variable) you wish to get

the output path for.
path = string (or pointer to a string), which is returned by the function and contains

the output path.

Returns:

Fortran: nothing it is a subroutine
C: 0 upon success or 1 if the filed is a fixed field
Python: the full path to the output file

 31

Appendix A: Errors in CMOR

The following errors are considered as CRITICAL and will cause a CMOR code to stop.

1. Calling a CMOR function before running cmor_setup
2. Udunits could not parse units
3. Incompatible units
4. Udunits could not create a converter
5. Logfile could not be open for writing
6. Wrong value for error_mode
7. wrong value for netcdf mode
8. error reading udunits system
9. Netcdf could not set variable attribute
10. Dataset does not have one of the required attributes (required attributes can be defined in the MIP

table)
11. Required global attribute is missing
12. Leap_year defined with invalid leap_month
13. Invalid leap month (<1 or >12)
14. Leap month defined but no leap year
15. Negative realization number
16. Zfactor variable not defined when needed
17. Variable has axis defined with formula terms depending on axis that are not part of the variable
18. NetCDF error when creating zfactor variable
19. NetCDF Error defining compression parameters
20. Calling cmor_write with an invalid variable id
21. Could not create path structure
22. “variable id” contains a “_” or a ‘-‘ this means bad MIP table.
23. “model_id” contains a “_”
24. “file_suffix” contains a “_”
25. Could not rename the file you’re trying to append to.
26. Trying to write an “Associated variable” before the variable itself
27. Output file exists and you’re not in append/replace mode
28. NetCDF Error opening file for appending
29. NetCDF could not find time dimension in a file onto which you want to append
30. NetCDF could not figure out the length time dimension in a file onto which you want to append
31. NetCDF could not find your variable while appending to a file
32. NetCDF could not find time dimension in the variable onto which you’re trying to append
33. NetCDF could not find time bounds in the variable onto which you’re trying to append
34. NetCDF mode got corrupted.
35. NetCDF error creating file
36. NetCDF error putting file in definition mode
37. NetCDF error writing file global attribute
38. NetCDF error creating dimension in file
39. NetCDF error creating variable
40. NetCDF error writing variable attribute
41. NetCDF error setting chunking parameters
42. NetCDF error leaving definition mode
43. Hybrid coordinate, could not find “a” coefficient
44. Hybrid coordinate, could not find “b” coefficient
45. Hybrid coordinate, could not find “a_bnds” coefficient
46. Hybrid coordinate, could not find “b_bnds” coefficient
47. Hybrid coordinate, could not find “p0” coefficient
48. Hybrid coordinate, could not find “ap” coefficient
49. Hybrid coordinate, could not find “ap_bnds” coefficient

 32

50. Hybrid coordinate, could not find “sigma” coefficient
51. Hybrid coordinate, could not find “sigma_bnds” coefficient
52. NetCDF writing error
53. NetCDF error closing file
54. Could not rename temporary file to its final name.
55. Cdms could not convert time values for calendar.
56. Variable does not have all required attributes (cmor_variable)
57. Could not allocate memory for zfactor elements
58. Udunits error freeing units
59. Udunits error freeing converter
60. Could not allocate memory for zfactor_bounds
61. Calling cmor_variable before reading in a MIP table
62. Too many variable defined (see appendix on CMOR limits)
63. Could not find variable in MIP table
64. Wrong parameter “positive” passed
65. No “positive” parameter passed to cmor_variable and it is required for this variable
66. Variable defined with too many (not enough) dimensions
67. Variable defined with axis that should not be on this variable
68. Variable defined with inexisting axis (wrong axis_id)
69. Defining variable with axes defined in a MIP table that is not the current one.
70. Defining a variable with too many axes (see annex on CMOR limits)
71. Defining a variable with dimensions that are not part of the MIP table (except for var named

“latitude” and “longitude”, since they could have grid axes defined in another MIP table)
72. Trying to retrieve length of time for a variable defined w/o time length
73. Trying to retrieve variable shape into an array of wrong rank (fortran only really)
74. Calling cmor_write with time values for a timeless variable
75. Cannot allocate memory for temporary array to write
76. Invalid absolute mean for data written (lower or greater than what the MIP table allows)
77. Calling cmor_write with time values when they have already been defined with cmor_axis when

creating time axis
78. Cannot allocate memory to store time values
79. Cannot allocate memory to store time bounds values
80. Time values are not monotonic
81. Calling cmor_write w/o time values when no values were defined via cmor_axis when creating time

axis
82. Time values already written in file
83. Time axis units do not contain “since” word (cmor_axis)
84. Invalid data type for time values (ok are ‘f’,’l’,’i’,’d’)
85. Time values are not within time bounds
86. Non montonic time bounds
87. Longitude axis spread over 360 degrees.
88. Overlapping bound values (except for climatological data)
89. bounds and axis values are not stored in the same order
90. requested value for axis not present
91. approximate time axis interval much greater (>20%) than the one defined in your MIP table
92. calling cmor_axis before loading a MIP table
93. too many axes defined (see appendix on CMOR limits)
94. could not find reference axis name in current MIP table
95. output axis needs to be standard_hybrid_sigma and input axis is not one of :

“standard_hybrid_sigma”, “alternate_hybrid_sigma”, “standard_sigma”
96. MIP table requires to convert axis to unknown type
97. requested “region” not present on axis
98. axis (with bounds) values are in invalid type (valid are: ‘f’,’d’,’l’,’i’)
99. requested values already checked but stored internally, could be bad user cleanup
100. MIP table defined for version of CMOR greater than the library you’re using
101. too many experiments defined in MIP table (see appendix on CMOR limits)

 33

102. cmor_set_table used with invalid table_id
103. MIP table has too many axes defined in it (see appendix on CMOR limits)
104. MIP table has too many variables defined in it (see appendix on CMOR limits)
105. MIP table has too many mappings defined in it (see appendix on CMOR limits)
106. MIP table defines the same mapping twice
107. grid mapping has too many parameters (see appendix on CMOR limits)
108. grid has different number of axes than what grid_mapping prescribes.
109. Could not find all the axes required by grid_mapping
110. Call to cmor_grid with axis that are not created yet via cmor_axis
111. Too many grids defined (see appendix on cmor_limits)
112. Call to cmor_grid w/o latitude array
113. Call to cmor_grid w/o longitude array

Appendix B: Limits in cmor

The following are defined in cmor.h

#define CMOR_MAX_STRING 2048
#define CMOR_DEF_ATT_STR_LEN 256
#define CMOR_MAX_ELEMENTS 500
#define CMOR_MAX_AXES CMOR_MAX_ELEMENTS*3
#define CMOR_MAX_VARIABLES CMOR_MAX_ELEMENTS
#define CMOR_MAX_GRIDS 10
#define CMOR_MAX_DIMENSIONS 7
#define CMOR_MAX_ATTRIBUTES 10030
#define CMOR_MAX_ERRORS 10
#define CMOR_MAX_TABLES 10
#define CMOR_MAX_GRID_ATTRIBUTES 15

 34

Sample Program 1

PROGRAM ipcc_test_code
!
! Purpose: To serve as a generic example of an application that
! uses the "Climate Model Output Rewriter" (CMOR)

! CMOR writes CF-compliant netCDF files.
! Its use is strongly encouraged by the IPCC and is intended for use
! by those participating in many community-coordinated standard
! climate model experiments (e.g., AMIP, CMIP, CFMIP, PMIP, APE,
! etc.)
!
! Background information for this sample code:
!
! Atmospheric standard output requested by IPCC are listed in
! tables available on the web. Monthly mean output is found in
! tables A1a and A1c. This sample code processes only two 3-d
! variables listed in table A1c ("monthly mean atmosphere 3-D data"
! and only four 2-d variables listed in table A1a ("monthly mean
! atmosphere + land surface 2-D (latitude, longitude) data"). The
! extension to many more fields is trivial.
!
! For this example, the user must fill in the sections of code that
! extract the 3-d and 2-d fields from his monthly mean "history"
! files (which usually contain many variables but only a single time
! slice). The CMOR code will write each field in a separate file, but
! many monthly mean time-samples will be stored together. These
! constraints partially determine the structure of the code.
!
!
! Record of revisions:

! Date Programmer(s) Description of change
! ==== ========== =====================
! 10/22/03 Rusty Koder Original code
! 1/28/04 Les R. Koder Revised to be consistent
! with evolving code design

! include module that contains the user-accessible CMOR functions.
 USE cmor_users_functions

 IMPLICIT NONE

 ! dimension parameters:
 ! ---------------------------------
 INTEGER, PARAMETER :: ntimes = 2 ! number of time samples to process
 INTEGER, PARAMETER :: lon = 4 ! number of longitude grid cells
 INTEGER, PARAMETER :: lat = 3 ! number of latitude grid cells
 INTEGER, PARAMETER :: lev = 5 ! number of standard pressure levels
 INTEGER, PARAMETER :: n2d = 4 ! number of IPCC Table A1a fields to be
 ! output.
 INTEGER, PARAMETER :: n3d = 2 ! number of IPCC Table A1c fields to
 ! be output.

 ! Define tables associating the user's variables with IPCC standard
 ! output variables. The user may choose to make this association in a
 ! different way (e.g., by defining values of pointers that allow him
 ! to directly retrieve data from a data record containing many
 ! different variables), but in some way the user will need to map his
 ! model output onto the Tables specifying the MIP standard output.

 ! ----------------------------------

 35

 ! My variable names for IPCC Table A1c fields
 CHARACTER (LEN=5), DIMENSION(n3d) :: &
 varin3d=(/'U', 'T'/)

 ! Units appropriate to my data
 CHARACTER (LEN=5), DIMENSION(n3d) :: &
 units3d=(/'m s-1', 'K ' /)

 ! Corresponding IPCC Table A1c entry (variable name)
 CHARACTER (LEN=2), DIMENSION(n3d) :: entry3d = (/'ua', 'ta' /)

 ! My variable names for IPCC Table A1a fields
 CHARACTER (LEN=8), DIMENSION(n2d) :: &
 varin2d=(/ 'LATENT ', 'TSURF ', 'SOIL_WET', 'PSURF ' /)

 ! Units appropriate to my data
 CHARACTER (LEN=6), DIMENSION(n2d) :: &
 units2d=(/ 'W m-2 ', 'K ', 'kg m-2', 'Pa ' /)

 CHARACTER (LEN=4), DIMENSION(n2d) :: &
 positive2d= (/ 'down', ' ', ' ', ' ' /)

 ! Corresponding IPCC Table A1a entry (variable name)
 CHARACTER (LEN=5), DIMENSION(n2d) :: &
 entry2d = (/ 'hfls ', 'tas ', 'mrsos', 'ps ' /)

! uninitialized variables used in communicating with CMOR:
! ---

 INTEGER :: error_flag
 INTEGER, DIMENSION(n2d) :: var2d_ids
 INTEGER, DIMENSION(n3d) :: var3d_ids
 REAL, DIMENSION(lon,lat) :: data2d
 REAL, DIMENSION(lon,lat,lev) :: data3d
 DOUBLE PRECISION, DIMENSION(lat) :: alats
 DOUBLE PRECISION, DIMENSION(lon) :: alons
 DOUBLE PRECISION, DIMENSION(lev) :: plevs
 DOUBLE PRECISION, DIMENSION(1) :: time
 DOUBLE PRECISION, DIMENSION(2,1):: bnds_time
 DOUBLE PRECISION, DIMENSION(2,lat) :: bnds_lat
 DOUBLE PRECISION, DIMENSION(2,lon) :: bnds_lon

 INTEGER :: ilon, ilat, ipres, ilev, itim

 ! Other variables:
 ! ---------------------

 INTEGER :: it, m

 ! ================================
 ! Execution begins here:
 ! ================================

 ! Read coordinate information from model output into arrays that will
 ! be passed to CMOR.
 ! Read latitude, longitude, and pressure coordinate values into
 ! alats, alons, and plevs, respectively. Also generate latitude and
 ! longitude bounds, and store in bnds_lat and bnds_lon, respectively.
 ! Note that all variable names in this code can be freely chosen by
 ! the user.

 36

 ! The user must write the subroutine that fills the coordinate arrays
 ! and their bounds with actual data. The following line is simply a
 ! a place-holder for the user's code, which should replace it.

 ! *** call to user-written subroutine ***

 call read_coords(alats, alons, plevs, bnds_lat, bnds_lon)

 ! Specify path where tables can be found and indicate that existing
 ! netCDF files should be overwritten.

 error_flag = cmor_setup(inpath='Test', netcdf_file_action='replace')

 ! Define dataset as output from the GICC model (first member of an
 ! ensemble of simulations) run under IPCC 2xCO2 equilibrium
 ! experiment conditions, and provide information to be included as
 ! attributes in all CF-netCDF files written as part of this dataset.

 error_flag = cmor_dataset(&
 outpath='Test', &
 experiment_id='2xCO2 equilibrium experiment', &
 institution= &
 'GICC (Generic International Climate Center, ' // &
 'Geneva, Switzerland)', &
 source='GICCM 2002(giccm_0_brnchT_itea_2, T63L32)', &
 calendar='noleap', &
 realization=1, &
 contact = 'Rusty Koder (koder@middle_earth.net) ', &
 history='Output from archive/giccm_03_std_2xCO2_2256.', &
 comment='Equilibrium reached after 30-year spin-up ' // &
 'after which data were output starting with nominal '// &
 'date of January 2030', &
 references='Model described by Koder and Tolkien ' // &
 '(J. Geophys. Res., 2001, 576-591). Also ' // &
 'see http://www.GICC.su/giccm/doc/index.html ' // &
 ' 2XCO2 simulation described in Dorkey et al. '// &
 '(Clim. Dyn., 2003, 323-357.)')

 ! Define all axes that will be needed

 ilat = cmor_axis(&
 table='IPCC_table_A1', &
 table_entry='latitude', &
 units='degrees_north', &
 length=lat, &
 coord_vals=alats, &
 cell_bounds=bnds_lat)

 ilon = cmor_axis(&
 table='IPCC_table_AA1', &
 table_entry='longitude', &
 length=lon, &
 units='degrees_east', &
 coord_vals=alons, &
 cell_bounds=bnds_lon)

 ipres = cmor_axis(&
 table='IPCC_table_A1', &
 table_entry='pressure', &
 units='Pa', &
 length=lev, &
 coord_vals=plevs)

 37

 ! note that the time axis is defined next, but the time coordinate
 ! values and bounds will be passed to CMOR through function
 ! cmor_write (later, below).

 itim = cmor_axis(&
 table='IPCC_table_A1', &
 table_entry='time', &
 units='days since 2030-1-1', &
 length=ntimes, &
 interval='20 minutes')

 ! Define variables appearing in IPCC table A1c that are a function of pressure
 ! (3-d variables)

 DO m=1,n3d
 var3d_ids(m) = cmor_variable(&
 table='IPCC_table_A1', &
 table_entry=entry3d(m), &
 units=units3d(m), &
 axis_ids=(/ ilon, ilat, ipres, itim /), &
 missing_value=-1.0e28, &
 original_name=varin3d(m))
 ENDDO

 ! Define variables appearing in IPCC table A1a (2-d variables)

 DO m=1,n2d
 var2d_ids(m) = cmor_variable(&
 table='IPCC_table_A1', &
 table_entry=entry2d(m), &
 units=units2d(m), &
 axis_ids=(/ ilon, ilat, itim /), &
 missing_value=-1.0e28, &
 positive=positive2d(m), &
 original_name=varin2d(m))
 ENDDO

 PRINT*, ' '
 PRINT*, 'completed everything up to writing output fields '
 PRINT*, ' '

 ! Loop through history files (each containing several different fields,
 ! but only a single month of data, averaged over the month). Then
 ! extract fields of interest and write these to netCDF files (with
 ! one field per file, but all months included in the loop).

 time_loop: DO it=1, ntimes

 ! In the following loops over the 3d and 2d fields, the user-written
 ! subroutines (read_3d_input_files and read_2d_input_files) retrieve
 ! the requested IPCC table A1c and table A1a fields and store them in
 ! data3d and data2d, respectively. In addition a user-written code
 ! (read_time) retrieves the time and time-bounds associated with the
 ! time sample (in units of 'days since 1970-1-1', consistent with the
 ! axis definitions above). The bounds are set to the beginning and
 ! the end of the month retrieved, indicating the averaging period.

 ! The user must write a code to obtain the times and time-bounds for
 ! the time slice. The following line is simply a place-holder for
 ! the user's code, which should replace it.

 38

 call read_time(it, time, bnds_time)

 ! Cycle through the 3-d fields (stored on pressure levels),
 ! and retrieve the requested variable and append each to the
 ! appropriate netCDF file.

 DO m=1,n3d

 ! The user must write the code that fills the arrays of data
 ! that will be passed to CMOR. The following line is simply a
 ! a place-holder for the user's code, which should replace it.

 call read_3d_input_files(it, varin3d(m), data3d)

 ! append a single time sample of data for a single field to
 ! the appropriate netCDF file.

 error_flag = cmor_write(&
 var_id = var3d_ids(m), &
 data = data3d, &
 ntimes_passed = 1, &
 time_vals = time, &
 time_bnds = bnds_time)

 IF (error_flag < 0) THEN
 ! write diagnostic messages to standard output device
 write(*,*) ' Error encountered writing IPCC Table A1c ' &
 // 'field ', entry3d(m), ', which I call ', varin3d(m)
 write(*,*) ' Was processing time sample: ', time

 END IF

 END DO

 ! Cycle through the 2-d fields, retrieve the requested variable and
 ! append each to the appropriate netCDF file.

 DO m=1,n2d

 ! The user must write the code that fills the arrays of data
 ! that will be passed to CMOR. The following line is simply a
 ! a place-holder for the user's code, which should replace it.

 call read_2d_input_files(it, varin2d(m), data2d)

 ! append a single time sample of data for a single field to
 ! the appropriate netCDF file.

 error_flag = cmor_write(&
 var_id = var2d_ids(m), &
 data = data2d, &
 ntimes_passed = 1, &
 time_vals = time, &
 time_bnds = bnds_time)

 IF (error_flag < 0) THEN
 ! write diagnostic messages to standard output device
 write(*,*) ' Error encountered writing IPCC Table A1a ' &
 // 'field ', entry2d(m), ', which I call ', varin2d(m)
 write(*,*) ' Was processing time sample: ', time

 END IF

 39

 END DO

 END DO time_loop

 ! Close all files opened by CMOR.

 error_flag = cmor_close()

 print*, ' '
 print*, '******************************'
 print*, ' '
 print*, 'ipcc_test_code executed to completion '
 print*, ' '
 print*, '******************************'

END PROGRAM ipcc_test_code

 40

Sample Portion of a MIP Table (which will be made available by MIP

organizers to contributing groups)

The user normally need not be concerned with the details contained in this table.

cmor_version: 0.8 ! version of CMOR that can read this table
cf_version: 1.0 ! version of CF that output conforms to
project_id: IPCC Fouth Assessment ! project id
table_id: Table A1 ! table id
table_date: 7 April 2004 ! date this table was constructed

expt_id_ok: 'pre-industrial control experiment'
expt_id_ok: 'present-day control experiment'
expt_id_ok: 'climate of the 20th Century experiment (20C3M)'
expt_id_ok: 'committed climate change experiment' ! official name(s) of
expt_id_ok: 'SRES A2 experiment' ! project's experiments
expt_id_ok: 'control experiment (for committed climate change experiment)'
expt_id_ok: '720 ppm stabilization experiment (SRES A1B)'
expt_id_ok: '550 ppm stabilization experiment (SRES B1)'
expt_id_ok: '1%/year CO2 increase experiment (to doubling)'
expt_id_ok: '1%/year CO2 increase experiment (to quadrupling)'
expt_id_ok: 'slab ocean control experiment'
expt_id_ok: '2xCO2 equilibrium experiment'
expt_id_ok: 'AMIP experiment'

magic_number: -1 ! used to check whether this file has been
 ! altered from the official version.
 ! should be set to number of non-blank
 ! characters in file.
approx_interval: 30. ! approximate spacing between successive time
 ! samples (in units of the output time
 ! coordinate.
missing_value: 1.e20 ! value used to indicate a missing value
 ! in arrays output by netCDF as 32-bit IEEE
 ! floating-point numbers (float or real)

!*#
!
! SUBROUTINE ARGUMENT DEFAULT INFORMATION
!
!*#
!
! set default specifications for subroutine arguments to:
! required/indeterminate/optional/ignored/forbidden
! (indeterminate may or may not be required information, but is not always
! required as an argument of the function call)
!
!
!============
subroutine_entry: cmor_axis
!============
!
required: table axis_name units length coord_vals cell_bounds
ignored: interval
!
!============
subroutine_entry: cmor_variable
!============
!

 41

required: table table_entry units axis_ids
indeterminate: missing_value
optional: tolerance original_name history comment
ignored: positive
!
!============
subroutine_entry: cmor_write
!============
!
required: var_id data
indeterminate: ntimes_passed time_vals time_bnds store_with
optional: file_suffix
!
!*#
!
! TEMPLATE FOR AXES
!
!*#
!
!============
!axis_entry: ! (required)
!============
!
! Override default argument specifications for cmor_axis
!------------
! acceptable arguments include units length coord_vals cell_bounds interval
!required: ! (default: table axis_name units length
! coord_vals cell_bounds)
!indeterminate:
!optional:
!ignored: ! (default: interval)
!forbidden:
!------------
!
! Axis attributes:
!----------------------------------
!standard_name: ! (required)
!units: ! (required)
!axis: ! X, Y, Z, T (default: undeclared)
!positive: ! up or down (default: undeclared)
!long_name: ! (default: undeclared)
!----------------------------------
!
! Additional axis information:
!----------------------------------
!out_name: ! (default: same as axis_entry)
!type: ! double (default), real, character, integer
!stored_direction: ! increasing (default) or decreasing
!valid_min: ! type: double precision (default: no check performed
!valid_max: ! type: double precision (default: no check performed
!requested: ! space-separated list of requested coordinates
 ! (default: undeclared)
!requested_bounds: ! space-separated list of requested coordinate bounds
 ! (default: undeclared)
!tol_on_requests: ! fractional tolerance for meeting request
 ! (default=1.e-3, which is used in the formula:
 ! eps = MIN((tol*interval between grid-points)
 ! and (1.e-3*tol*coordinate value)))
!value: ! of scalar (singleton) dimension
!bounds_values: ! of scalar (singleton) dimension bounds
!----------------------------------
!
!*#

 42

!
! TEMPLATE FOR VARIABLES
!
!*#
!
!============
!variable_entry: ! (required)
!============
!
! Override default argument specifications for cmor_variable
!------------
! acceptable arguments include file_suffix missing_value tolerance
! original_name history comment positive
!required: ! (default: table table_entry units axis_ids)
!indeterminate: ! (default: file_suffix missing_value)
!optional: ! (default: original_name history comment)
!ignored: ! (default: positive)
!forbidden:
!------------
!
! Variable attributes:
!----------------------------------
!standard_name: ! (required)
!units: ! (required)
!cell_methods: ! (default: undeclared)
!long_name: ! (default: undeclared)
!comment: ! (default: undeclared)
!----------------------------------
!
! Additional variable information:
!----------------------------------
!dimensions: ! (required) (scalar dimension(s) should appear
 ! last in list)
!out_name: ! (default: variable_entry)
!type: ! real (default), double, integer
!positive: ! up or down (default: undeclared)
!valid_min: ! type: real (default: no check performed)
!valid_max: ! type: real (default: no check performed)
!ok_min_mean_abs: ! type: real (default: no check performed)
!ok_max_mean_abs: ! type: real (default: no check performed)
!----------------------------------
!
!
!*#
!
! AXIS INFORMATION
!
!*#
!
!============
axis_entry: longitude
!============
!
!------------
!
! Axis attributes:
!----------------------------------
standard_name: longitude
units: degrees_east
axis: X
long_name: longitude
!----------------------------------
!

 43

! Additional axis information:
!----------------------------------
out_name: lon
valid_min: 0. ! CMOR will add n*360 to input values
 ! (where n is an integer) to ensure
 ! longitudes are in proper range. The
 ! data will also be rearranged
 ! appropriately.
valid_max: 360. ! see above comment.
!----------------------------------
!
!
!=============
axis_entry: latitude
!=============
!
! Axis attributes:
!----------------------------------
standard_name: latitude
units: degrees_north
axis: Y
long_name: latitude
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: lat
valid_min: -90.
valid_max: 90.
!----------------------------------
!
!
!============
axis_entry: time
!============
!
! Override default argument specifications for cmor_axis
!------------
required: interval
indeterminate: coord_vals cell_bounds
!------------
!
! Axis attributes:
!----------------------------------
standard_name: time
units: days since ? ! the user's basetime will be used
axis: T
long_name: time
!----------------------------------
!
!
!============
axis_entry: pressure
!============
!
! Override default argument specifications for cmor_axis
!------------
ignored: cell_bounds
!------------
!
! Axis attributes:
!----------------------------------
standard_name: air_pressure

 44

units: Pa
axis: Z
positive: down
long_name: pressure
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: plev
valid_min: 0.
valid_max: 110000.
requested: 10000. 20000. 30000. 40000. 50000.
!----------------------------------
!
!
!============
axis_entry: height1
!============
!
! Override default argument specifications for cmor_axis
!------------
ignored: cell_bounds
!------------
!
! Axis attributes:
!----------------------------------
standard_name: height
units: m
axis: Z
positive: up
long_name: height
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: height
valid_min: 0.
valid_max: 10.
value: 2.
!----------------------------------
!
!
!============
axis_entry: height2
!============
!
! Override default argument specifications for cmor_axis
!------------
ignored: cell_bounds
!------------
!
! Axis attributes:
!----------------------------------
standard_name: height
units: m
axis: Z
positive: up
long_name: height
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: height

 45

valid_min: 0.
valid_max: 30.
value: 10.
!----------------------------------
!
!============
axis_entry: depth1
!============
!
!------------
!
! Axis attributes:
!----------------------------------
standard_name: depth
units: m
axis: Z
positive: down
long_name: depth
!----------------------------------
!
! Additional axis information:
!----------------------------------
out_name: depth
valid_min: 0.0
valid_max: 1.0
value: 0.05
bounds_values: 0.0 0.1
!----------------------------------
!
!
!*#
!
! VARIABLE INFORMATION
!
!*#
!
!============
variable_entry: tas
!============
!
! Variable attributes:
!----------------------------------
standard_name: air_temperature
units: K
cell_methods: time: mean
long_name: Surface Air Temperature
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time height1
valid_min: 200.
valid_max: 340.
ok_min_mean_abs: 270.
ok_max_mean_abs: 300.
!----------------------------------
!
!
!============
variable_entry: hfls
!============
!
! Override default argument specifications for cmor_variable

 46

!------------
required: positive
!------------
!
! Variable attributes:
!----------------------------------
standard_name: upward_surface_latent_heat_flux
units: W m-2
cell_methods: time: mean
long_name: Surface Latent Heat Flux
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time
positive: up
valid_min: -50.
valid_max: 300.
ok_min_mean_abs: 20.
ok_max_mean_abs: 150.
!----------------------------------
!
!============
variable_entry: mrsos
!============
!
! Variable attributes:
!----------------------------------
standard_name: moisture_content_of_soil_layer
units: kg m-2
cell_methods: time: mean
long_name: Moisture in Upper 0.1 m of Soil Column
comment: includes subsurface frozen water but not surface snow and ice
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time depth1
!----------------------------------
!
!
!============
variable_entry: ua
!============
!
! Variable attributes:
!----------------------------------
standard_name: eastward_wind
units: m s-1
cell_methods: time: mean
long_name: Zonal Wind Component
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude pressure time
valid_min: -200.
valid_max: 300.
ok_min_mean_abs: 0.1
ok_max_mean_abs: 100.
!----------------------------------
!
!

 47

!============
variable_entry: ta
!============
!
! Variable attributes:
!----------------------------------
standard_name: air_temperature
units: K
cell_methods: time: mean
long_name: Temperature
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude pressure time
valid_min: 150.
valid_max: 350.
ok_min_mean_abs: 200.
ok_max_mean_abs: 300.
!----------------------------------
!
!============
variable_entry: pr
!============
!
! Variable attributes:
!----------------------------------
standard_name: precipitation
units: kg m-2 s-1
cell_methods: time: mean
long_name: Precipitation
comment: includes all types (rain, snow, large-scale, convective, etc.)
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude time
valid_min: 0.0
valid_max: 1.e-4
ok_min_mean_abs: 1.e-6
ok_max_mean_abs: 5.e-5
!----------------------------------
!
!============
variable_entry: cl
!============
!
! Variable attributes:
!----------------------------------
standard_name: cloud_area_fraction
units: %
cell_methods: time: mean
long_name: Total Cloud Fraction
!----------------------------------
!
! Additional variable information:
!----------------------------------
dimensions: longitude latitude zlevel time
valid_min: 0.0
valid_max: 100.0
ok_min_mean_abs: 10.0
ok_max_mean_abs: 90.0
!----------------------------------

